참고 https://github.com/Andrewhsin/YOLO-NAS-pytorch 위 링크에서 train.py와 inference.py 파일을 가져왔다. 데이터셋 준비 COCO 혹은 YOLO 데이터 포맷으로 된 커스텀 데이터셋을 아래와 같이 준비한다. ├── Dataset │ ├── train │ │ ├── images │ │ │ ├── 1.jpg │ │ │ ├── 2.jpg | | | ├── .... │ │ ├── labels │ │ │ ├── 1.txt │ │ │ ├── 2.txt | | | ├── .... │ ├── val │ │ ├── images │ │ │ ├── 1.jpg │ │ │ ├── 2.png | | | ├── .... │ │ ├── labels │ │ │ ├── 1.txt │ ..
![](https://t1.daumcdn.net/tistory_admin/static/manage/images/r3/default_L.png)
전체 글
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FbffHg0%2FbtsFoFa0gTL%2FyIPL6LjXMmQG1JDfryaKKk%2Fimg.png)
YOLOv9 https://github.com/WongKinYiu/yolov9 https://arxiv.org/abs/2402.13616 설치 git clone https://github.com/WongKinYiu/yolov9 cd yolov9 pip install -r requirements.txt -q # 모델 다운로드 # https://github.com/WongKinYiu/yolov9/releases 참조 wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt wget https:..
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FegzS5u%2FbtsFocNiCVW%2FvFYcX71kIsHUK0kXyRde10%2Fimg.gif)
https://github.com/Deci-AI/super-gradients GitHub - Deci-AI/super-gradients: Easily train or fine-tune SOTA computer vision models with one open source training library. T Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS. - Deci-AI/super-gradients github.com 요구사항 파이썬 버전 : 3.7, 3.8, 3.9 PyTorch 버전 : 1.9.0 = 11.2 CuDNN >= 8.1.x Nvidi..